WMRB: Learning to Rank in a Scalable Batch Training Approach

نویسندگان

  • Kuan Liu
  • Premkumar Natarajan
چکیده

We propose a new learning to rank algorithm, named Weighted Margin-Rank Batch loss (WMRB), to extend the popular Weighted Approximate-Rank Pairwise loss (WARP). WMRB uses a new rank estimator and an efficient batch training algorithm. The approach allows more accurate item rank approximation and explicit utilization of parallel computation to accelerate training. In three item recommendation tasks, WMRB consistently outperforms WARP and other baselines. Moreover, WMRB shows clear time efficiency advantages as data scale increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOLAR: Scalable Online Learning Algorithms for Ranking

Traditional learning to rank methods learn ranking models from training data in a batch and offline learning mode, which suffers from some critical limitations, e.g., poor scalability as the model has to be retrained from scratch whenever new training data arrives. This is clearly nonscalable for many real applications in practice where training data often arrives sequentially and frequently. T...

متن کامل

Online Learning to Rank for Content-Based Image Retrieval

A major challenge in Content-Based Image Retrieval (CBIR) is to bridge the semantic gap between low-level image contents and high-level semantic concepts. Although researchers have investigated a variety of retrieval techniques using different types of features and distance functions, no single best retrieval solution can fully tackle this challenge. In a real-world CBIR task, it is often highl...

متن کامل

A Batch Learning Framework for Scalable Personalized Ranking

In designing personalized ranking algorithms, it is desirable to encourage a high precision at the top of the ranked list. Existing methods either seek a smooth convex surrogate for a non-smooth ranking metric or directly modify updating procedures to encourage top accuracy. In this work we point out that these methods do not scale well to a large-scale setting, and this is partly due to the in...

متن کامل

ارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبه‌بندی در بازیابی اطلاعات

Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...

متن کامل

Handling Class Imbalance in Link Prediction Using Learning to Rank Techniques

We consider the link prediction problem in a partially observed network, where the objective is to make predictions in the unobserved portion of the network. Many existing methods reduce link prediction to binary classification problem. However, the dominance of absent links in real world networks makes misclassification error a poor performance metric. Instead, researchers have argued for usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04015  شماره 

صفحات  -

تاریخ انتشار 2017